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Hydrodynamic interactions in ordering process of two-dimensional quenched block copolymers

Y. Yokojima and Y. Shiwa
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The hydrodynamic coarsening of microphase separation in two-dimensional diblock copolymers is studied
using numerical simulations. Results for symmetric and asymmetric block copolymers are compared. In con-
trast to the formation of the hexagonal phase where hydrodynamic flow appears not to be effective in enhanc-
ing domain coarsening, the late-time evolution of the lamellar phase proceeds faster, thus leading to a different
power-law scaling with the addition of coupling of the velocity field to the order parameter.

DOI: 10.1103/PhysRevE.65.056308 PACS number~s!: 47.20.2k, 61.41.1e, 47.54.1r, 64.60.Cn
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I. INTRODUCTION

When a system is transferred from a homogeneous p
to an ordered phase where the initial state is thermodyna
cally unstable, a network of small domains of ordered ph
develops spontaneously and the length scale associated
these domains grows with time. In systems such as a bin
mixture, this domain coarsening proceeds to form mac
scopic domains~hence termed macrophase separation!. In
this paper we focus on block copolymers, a system in wh
coarsening cannot proceed to a macroscopic scale.

A characteristic feature of the block copolymers is t
connectivity between chemically distinct building block
Due to this severe constraint a phase separation, which
curs at low enough temperatures, can segregate at best t
mesoscopic length scale. This so-called microphase sep
tion produces spatially periodic patterns. The existence of
spatial period 2p/q0 of the ordered structure renders th
study of microphase separation kinetics quite intriguing
comparison with the case of macrophase separation
which q050.

It is now generally accepted@1# that, during the late stage
of macrophase separation, there is dynamical self-simila
where morphologies at different times can be related b
single characteristic lengthL(t). In general, this length
grows as a power law in time,L(t);tn, wheren is called the
growth exponent. A large number of systems can then
grouped into a small number of universality classes cha
terized by a common exponentn depending only on certain
relevant system characteristics and not on the details of
particular system. One of the relevant features that influe
the growth law is the presence of the coupling between
order parameter and the hydrodynamic velocity fields. Wh
the hydrodynamic interactions are operative it is well kno
that the coarsening proceeds much faster, although the e
value of the growth exponent remains incompletely und
stood@2#.

In the microphase separation, however, the situation is
from clear. No successful theoretical formulation is yet ava
able for the domain coarsening in the absence of hydro
namic fields. Exponentsn ranging from 1/5 to 1/2 have bee
reported~mostly from numerical simulations! @3,4#. There is
even a suggestion of breakdown of the universality@5#.

Therefore it is no surprise to find that the problem
hydrodynamic coarsening in block copolymers has been l
1063-651X/2002/65~5!/056308~11!/$20.00 65 0563
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exploited using numerical studies. However, the dynam
scale invariance of coarsening is scarcely addressed, e
because the simulations are performed on a rather smal
tice ~hence a system freezes at long times and the path
toward this state is too short to exhibit a possible asympt
scaling behavior! @6,7# or because the coarsening has n
been followed through the average domain size~which is
most commonly measured in macrophase separation stu!
@8,9#. Consequently, the role of velocity fields remains
source of controversy.

In what follows, we undertake a detailed numerical ana
sis of the growth law of domain evolution in the coarseni
of microphase separating block copolymers with hydrod
namic flow. In Sec. II we introduce a time-depende
Ginzburg-Landau-type model for the ordering dynamics
lamellar patterns, which incorporates the hydrodynamic c
pling of the order parameter field. Our simulation is faci
tated by the use of computationally efficient cell-dynamic
system ~CDS! method, which has quite successful
elaborated the nature of macrophase separation@10#. In Sec.
III we present numerical results for the correlation functi
of the order parameter~scattering function! and the orienta-
tional correlation function of the lamellar domains. Wi
these correlation functions, quantitative study of the grow
exponent is provided. In order to address the important qu
tion that whether hydrodynamic interactions are equally i
portant for both symmetric copolymers and asymmetric
polymers, we study in Sec. IV the kinetics of micropha
separation into the hexagonal phase. Section V conclu
this paper with a summary and discussion.

II. DYNAMICAL MODEL

A. TDGL equations for lamellar formation

In this section we considerA-B diblock copolymers with
equal-length subchains, in which an ordered layered ph
with alternatingA andB rich domains~lamellae! is formed.
We investigate formation of the lamellar state in two dime
sions with rotational invariance in the plane. The model
describe its dynamics is the following time-depende
Ginzburg-Landau~TDGL! equation for the order paramete
c:

]c

]t
5M¹2

dH$c%

dc
2~v•“ !c. ~1!
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Y. YOKOJIMA AND Y. SHIWA PHYSICAL REVIEW E 65 056308
Thec(r ,t) is the scalar order parameter at a space-time p
(r ,t), chosen to be the local monomer concentration diff
ence ofA andB species. The free energy functionalH$c% is
given by

bH$c%5Hs$c%1Hl$c%, ~2!

Hs$c%5E dr S 2
t

2
c21

u

4
c41

K

2
~“c!2D , ~3!

Hl$c%5
B

2E drE dr 8c~r ,t !G~r2r 8!c~r 8,t !, ~4!

whereG is the Green’s function for the Laplace equation

¹ r
2G~r2r 8!52d~r2r 8!. ~5!

The aboveH$c% is essentially the effective Hamiltonian firs
derived by Leibler@11# and subsequently discussed by Oh
and Kawasaki@12#. The positive constantsM, t, u, K, andB
are phenomenological parameters. Mesoscopic orde
caused by competition between short-range attractive
long-range repulsive interactions. They are represented
spectively, by the parametersK in Hs and B in Hl . Hence
Hl$c% is inherent in the microphase separation.

The velocity fieldv(r ,t) that advects the fieldc, slowly
varying with horizontal coordinatesr5(x,y), is an addi-
tional degree of freedom that qualitatively changes the ph
ics @13#. The velocityv is defined in terms of the vertica
vorticity V[ ẑ•“3v ( ẑ being the unit vector along thez
axis!, which in turn is driven by distortions of the fieldc. We
report here results for the same form of vorticity driving us
in Ref. @13#;

h0~c22¹2!V5 ẑ•S“dH$c%

dc
3“c D , ~6!

whereh0 andc2 are other phenomenological parameters t
determine the strength of the coupling between the hydro
namic flow andc.

Let us introduce the vertical vorticity potentialz, defined
by V52¹2z, so thatv5(]yz,2]xz). Also hereafter we
will use the units in whichu5K5M51. Our model then
reads

] tc5¹2~2tc1c32¹2c!2Bc2~v•“ !c, ~7!

~c22¹2!¹2z5gẑ•@“~¹21B¹22!c3“c#, ~8!

with “•v50, andg[1/h0. In Eq. ~8!, ¹22c is a short-hand
notation for2*dr 8G(r2r 8)c(r 8).

B. CDS modeling

In order to simulate Eqs.~7! and ~8!, we employed the
CDS method on a square lattice@10#. Explicitly, we solved
the following CDS model@13–15#.

c~n,t11!5c~n,t !2^^J~n,t !&&1J~n,t !2Bc~n,t !

2v~n,t !•@“#dc~n,t !, ~9!
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~c22@¹2#d!@¹2#dz5gẑ•$@“#d$D~^^c&&2c!1B@¹2#dc%

3@“#dc%. ~10!

Herec(n,t) is the order parameter in thenth cell at timet,
and

J[A tanhc1D~^^c&&2c!2c ~11!

is the effective chemical potential corresponding to
2dH$c%/dc. The parametersA andD set the units used in
the CDS dynamics, and the double angular brackets de
an isotropized average of a neighborhood of cells:

^^X&&5
1

6 ( X~nearest2neighbor cells!

1
1

12 ( X~next2nearest2neighbor cells!.

~12!

In the above equations@O#d denotes the discrete version o
the enclosed operatorO; the discrete gradient was cent
difference evaluated and for the Laplacian we used the id
tification @16#: @¹2#dO53(^^O&&2O). The operator@¹22#d
is the inverse of the discrete Laplacian@¹2#d , and is com-
puted using fast Fourier transform techniques.

The linear stability analysis of Eq.~9! shows that the ho-
mogeneous state (c50) is destabilized for

A>Ac[112ADB. ~13!

The wave numberkm of the most unstable mode is given v
the equation

2J0~km!1J0~A2km!53@11~12A!/~2D !#, ~14!

whereJ0 is the Bessel function of the first kind. One als
finds from the linear analysis that the wave numberke that
minimizes the free energy, is obtained as the solution of

2J0~ke!1J0~A2ke!53~12AB/D !. ~15!

III. NUMERICAL RESULTS

We have simulated Eqs.~9! and ~10! on a system of size
102431024 with periodic boundary conditions. The initia
conditions were a random distribution ofc of amplitude 0.1.
The parameters used wereA51.22, D50.45, c252, and
B50.02, so that the critical value ofA is Ac51.19, andkm
50.89, ke50.82. Thus the aspect ratioG as defined by the
system length versus 2p/ke is G5134, and experience ha
shown that one sample is sufficient to discern the gross
havior of our interest. We also note that the characteri
length scale at late stages of coarsening was found to be
order of magnitude smaller than the system size~see below!.
Hence we believe that the finite size effects are negligible
our simulations. We will present results forg50 andg55 to
assess the importance of the hydrodynamic interactions s
8-2
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HYDRODYNAMIC INTERACTIONS IN ORDERING . . . PHYSICAL REVIEW E65 056308
a different growth law may be at work for a higher value
g at which the spiral structure is expected to form@13#.

A. Scattering function

We computed the circularly averaged scattering funct
S(k,t) defined by

S~k,t !5^c̃~k,t !c̃* ~k,t !&, ~16!

wherec̃(k,t) is the Fourier transform of the order paramet
and the orientation of the wave vectork is averaged over. To
remove any effect due to the finiteness of the ratio of
thickness of domain walls to the domain size, we calcula
S(k,t) after the data were hardened using the transforma
c→sgnc.

Time evolution ofS(k,t) is shown in Fig. 1. It is seen tha
there is a shift in the position whereS(k,t) has its maximum,
the shift occurring fromkm towardke with increasing time.
After the peak had shifted to the positionke , representing
the equilibrium lamellar thickness, narrowing of the scatt
ing profile and the concomitant increase of the peak inten
occurred gradually. It turns out that the latter time region
the region where the scaling behavior of coarsening is
served. We fittedS(k,t) to a squared Lorentzian form

S~k,t !5a2/@~k22b!21c2#2, ~17!

and extracted the full width at half maximum,dk(t)
5AA221c/b, and the peak height,Sp(t)5a2/c4 of the
scattering function at timet. The characteristic length sca
~domain size!, l (t), may then be defined byl (t)
52p/dk(t). Figure 2 displays the time dependence of t
peak intensity and width measured in this way. The char
teristic length scale is well fitted by a power lawl ;ta with

FIG. 1. Time evolution of the circularly averaged scatteri
function S(k,t) for lamellar formation with (d) and without (s)
hydrodynamic coupling. The times aret5100, 1000, and 50 000
from low to high peaks, and the scale of the vertical axis is
arbitrary units.
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a50.2060.01. The peak height also grows as a power la
Sp;tb and we foundb5a. The resulta5b implies that
S(k,t) satisfies the scalingS(k,t)5l (t) f „(k2ke)l (t)…,
where f (x) is a scaling function. The notable feature of th
result demonstrated by Fig. 2 is that we have a same sca
consistent withl ;t1/5 with the inclusion of hydrodynamic
couplings.

B. Orientational correlation function

However, the morphology of the patterns appears rat
different in the presence and absence of hydrodynamics~see
Fig. 3!. If hydrodynamics is included, it enhances removal
defects and lamellae smoothly curved are evident in the
ure. To quantify the difference we have calculated the te
poral change in orientation of the lamellae.

A direct method of probing the orientational order is
evaluate a correlation function of the local orientation fie
u(r ,t), of the lamellar patterns. Explicitly, we have com
puted the correlation function

C2~R,t ![^exp$2i @u~r1R,t !2u~r ,t !#%& ~18!

averaging over the spatial coordinater and R for fixed R
[uRu. The local orientationu is defined as the angle in th
direction normal to the lamellar axis. The factor of 2 is r
quired by a twofold symmetry of lamellar patterns, We ha
employed the prescription described in Appendix A to extr
u from simulation data. Figure 4~a! shows C2(r ,t) for g
50 at various times. The correlation decays with increas
separationr, and from this decay we can extract the orien
tional correlation lengthjh(t) as the value ofr at which
C2(r ,t) reaches the value ofh, whereh(,1) is some con-
stant@note thatC2(0,t)51#. The scaling exponentg is ex-
tracted from a log-log plot ofjh(t) versus time. As shown in
Fig. 4~b!, g assumes the same value independent ofh, hence
in the following we choose to use simplyj1/2(t) as a char-
acteristic length@which we now denote byj(t)# of the ori-
entation field.

FIG. 2. Time evolution of the peak intensitySp ~bottom! and the
inverse of the widthdk ~top! of the scattering function for lamella
formation. Open symbols are data forg50 while crosses are for
g55.
8-3
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FIG. 3. Lamellar patterns achieved att5105 for g50 ~a! and 5~b! with the same initial condition. The bright regions correspond
positive values of the order parameterc while the dark ones to negativec. Each figure exhibits a 5122 portion of the 10242 lattice result.
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As might be expected, the qualitative difference obser
in Fig. 3 is magnified through the orientation field. See F
5. Thej(t) is consistent with the power lawj;tg. We found
g50.2160.01 for g50 andg50.3060.01 for g55, con-
firming the stronger orientational growth in the presence
hydrodynamic flow.

IV. HYDRODYNAMIC INTERACTIONS
IN HEXAGONAL PATTERNS

The lamellar phase is stable for nearly symmet
diblocks, while a hexagonally packed phase is stable
diblocks with intermediate levels of compositional asymm
try. Increasing the volume fraction~or block ratio f ) of A
blocks, sayf .1/2, induces interfacial curvature allowing th
longer A blocks to reside on the convex side of theA-B
interface, thus reducing the elastic energy.

Hexagons are equivalent to superposition of three lam
05630
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lae aligned at multiples ofp/3. However, the hexagonal pa
tern has several features that sharply define it from the lam
lar pattern. A perfectly regular hexagonal pattern is n
permitted in a square box or any box with rational asp
ratio because the structure has to fit with nonmatch
boundary conditions such as periodic boundary conditio
The so-called penta-hepta defects, most typical point def
in hexagonal patterns, are very stable once having been
ated@17#. It is with good reasons, therefore, to ask wheth
coarsening of the hexagonal pattern is governed by the s
growth law as found in the case of lamellar systems.

A. Model equations

It is now widely recognized that the hexagonal structu
are described by a simple extension of the free energy~4! in
the form @12#
me
FIG. 4. ~a! Time evolution of the orientational correlation functionC2(r ,t) in the absence of hydrodynamic flow with successive ti
steps;t5102, 103, 104, 53104, and 105 increasing from left to right.~b! Time evolution of the length scalejh(t) for which C2(jh ,t)
5h, whereh50.3, 0.5, 0.7 from top to bottom. Lines of best fit to data are also drawn, and all have the same slope 0.21.
8-4



HYDRODYNAMIC INTERACTIONS IN ORDERING . . . PHYSICAL REVIEW E65 056308
FIG. 5. Time evolution of the half widthj of the orientational correlation functionC2(r ,t). Open symbols denote the result forg50
while crosses are forg55. Lines of the best fit to data are also drawn. Shown on the right is the plot ofj/(dk)21 versust wheredk is the
width of the scattering function.
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Hl$c%5
B

2E drE dr 8dc~r ,t !G~r2r 8!dc~r 8,t !, ~19!

where dc(r ,t)5c(r ,t)2c̄ with c̄, the spatial average o
c(r ), given by c̄52 f 21. The only changes caused by th
replacement~19! in the model are substitutions:

Bc→B~c2c̄ ! in Eq. ~7!,

Bc~n,t !→B~c~n,t !2c̄ ! in Eq. ~9!.

Thus

A→A sech2c̄ in Eqs. ~13! and~14!,

c̃~k,t !→dc̃~k,t ! in Eq. ~16!.
05630
With these changes coarsening of hexagonal patterns
been simulated and the time evolution of the fieldc is now
given in below.

B. Simulations

We have studied the hexagonal domain coarsening foc̄
520.2, which corresponds tof 50.4. In the simulations we
choseA51.25 since the dynamics appears to freeze at lo
times for higher values. All the other parameters and
initial conditions are the same as in Sec. III.

The scattering functions at several time steps are show
Fig. 6~a!. In Fig. 6~b! the semilogarithmic plot ofS(k,t)
versusk at higher wave numbers, the second and third pe
are evident. In particular, the peak atk.A3ke (ke being the
primary peak position! is related to the development of (110
planes of the hexagonal phase. Figure 7 displays a dou
logarithmic plot of the widthdk(t) and the peak intensity
f

FIG. 6. ~a! Time evolution of the scattering functionS(k,t) for hexagonal pattern formation with (d) and without (s) hydrodynamic

coupling. The times aret5100, 1000, and 50 000 from low to high peaks, andS(k,t) is in arbitrary units.~b! The higher-order peaks o
S(k,t) for the caseg55 at t56000 (s) and 105 (d). Notice of the logarithmic scale of the vertical axis.
8-5
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Y. YOKOJIMA AND Y. SHIWA PHYSICAL REVIEW E 65 056308
Sp(t) of S(k,t) versus time. The growth behaviors with an
without inclusion of hydrodynamics display very little diffe
ence. The time dependence ofdk and ofSp obey the power
law dk21;ta and Sp;tb with a5b50.1760.01, roughly
consistent with thet1/5 scaling for lamellar growth.

In Fig. 8~a! we demonstrate the hexagonal pattern attai
at t5105 for g55. The corresponding morphology forg
50 is not shown there because a big difference was ha
visible through the eye. One can then wonder whether
distinction between the absence and the presence of hy
dynamic coarsening is marked in the orientational orde
hexagonal structures. Since the order is in the orientatio
domains aligned at multiples ofp/3, the appropriate correla
tion function to look at is

FIG. 7. Time evolution of the peak intensitySp ~bottom! and the
inverse of the widthdk ~top! of the scattering function for hexago
nal formation. Open symbols are data forg50 while crosses are fo
g55.
05630
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C6~R,t ![^exp$6i @u~r1R,t !2u~r ,t !#%&. ~20!

The right panel~b! in Fig. 8 displays the orientation field
u(r ) of the pattern of the left panel. We have plotted the
cos 6u(r ) with eight gray levels.

We have extracted the orientational characteristic len
j(t) by calculatingC6(r ,t) with the same method that w
used forC2(r ,t). The result is shown in Fig. 9. The expone
g for j is estimated from the straight line fit to beg50.20
60.01 for two cases~i.e., g50 and 5!. Thus even with the
addition of hydrodynamic flow the growth remains cons
tent with thet1/5 scaling in the hexagonal formation.

V. SUMMARY AND DISCUSSION

The first theoretical attempt to study the role of hydrod
namic interactions in the formation of a mesophase of blo
copolymers was by Bahiana and Oono@15#. Using the CDS
approach, they tried to get over the difficulty in producing
well-aligned lamellar structure when the velocity field is a
sent. Later Gonnellaet al. @6# addressed the problem usin
lattice Boltzmann simulations. These works find that the h
drodynamic fields allow the lamellae to reorder giving l
cally well-defined lamellar regions.

So far, however, the dynamical growth of the characte
tic length scaleL(t) in the pattern dynamics has not bee
studied in the presence of hydrodynamic interactions. T
single exception is a numerical study in Ref.@7#, where the
authors have measuredL(t) by the location of the first zero
of the pair correlation function of the order parameter. Ho
ever, the system saturated at quite earlier time~supposedly
due to the small system size used in the simulation!, and
owing to the lack of data for large time the scaling growth
es of
FIG. 8. ~a! Hexagonal pattern achieved att5105 in the presence of hydrodynamic coupling. The bright regions denote positive valu
c while dark ones denote negativec. The corresponding orientation fieldu(r ) is displayed on the panel~b!. It is displayed by plotting
cos 6u(r ) with eight gray levels; the bright regions correspond to regions with cos 6u.0 and the dark ones denote cos 6u,0. Both panels
exhibit a 5122 portion of the 10242 system.
8-6
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HYDRODYNAMIC INTERACTIONS IN ORDERING . . . PHYSICAL REVIEW E65 056308
not convincingly demonstrated. Recent numerical work
Maurits et al. @8# and by Grootet al. @9# focused on the
following quantities:

v~ t ![V21E drdc2~r ,t !, p~ t ![(
k

S~k,t !ln S~k,t !,

~21!

whereV is the system volume. Unfortunately, by definitio
these parameters cannot contain the characteristic le
scale, hence fail to capture the essential features of the
dering dynamics. In this connection it is worth adding th
the power-law scaling is always observed after thev(t)
reaches the final plateau corresponding to its equilibri
value.†In Ref. @8#, the authors also studied the time depe
dence of the scattering functionS(k,t). They then identified
the lower value of the peak position (kp) of S(k,t) with the
larger domain size. However,kp does not represent the do
main size but instead the lamellar spacing, being of no di
relevance to coarsening kinetics.‡

FIG. 9. Time evolution of the half widthj of the orientational
correlation functionC6(r ,t) for hexagonal pattern formation with
~1! and without (s) hydrodynamics.
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We have given in this paper a detailed numerical analy
of the growth law of domain coarsening. The conclusio
that we can draw from the present simulations are as follo

~1! With hydrodynamic interactions the lamella-formin
system removes its topological defects more effectively,
hancing the lamellar orientation.

~2! The flow-enhanced orientation is reflected in the
creased growth exponent of the characteristic length for
asymptotic orientational order.

~3! The power-law growth for the hexagonal doma
coarsening shows very little difference with the inclusion
hydrodynamic interactions.

To understand the underlying cause of the difference
tween lamellar and hexagonal domain coarsenings, we s
in Fig. 10 the temporal change in the strength of the hyd
dynamic flux (Fh) and the dissipative or diffusion flux (Fd).
They are defined, respectively, by

Fh /V[^ucvu&, ~22!

Fd /V[ K U2“

dH

dc U L . ~23!

Comparing the relative importance of the two transp
mechanisms seen in Fig. 10~a! in combination with Fig. 5,
we can deduce that the hydrodynamic flow is responsible
the increased orientational order in lamellar patterns. In f
the orientational characteristic lengthj starts growing faster
than the other length scalel (dk21) once the hydrodynamic
flux becomes dominant. In this sense it is well justified th
the hydrodynamic process in coarsening is sometimes
ferred to as geometrical coarsening@18# since it does not
accompany the acceleration of the length scalel , which is
probed by the density correlation functionS(k,t). Hence the
late-stage coarsening of lamellar phases cannot be un
sally described by a single power law, and probably depe
on the strength of hydrodynamic coupling. To investigate
latter point systematically, is left for a future study. In th
context, it would be extremely fruitful to pursue an analo
@4,19# between pattern dynamics of the lamellar phase
FIG. 10. Temporal change in the average hydrodynamic fluxFh (s) and the average diffusion fluxFd ~crosses denoteFd for g50 and
diamonds forg55) in the coarsening of lamellar~a! and hexagonal~b! domains.
8-7
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Y. YOKOJIMA AND Y. SHIWA PHYSICAL REVIEW E 65 056308
that of a roll state observed in Rayleigh-Be´nard convections
for which some amount of data are now accumulating@20#.

Contrary to the lamellar case, the hydrodynamic field
the hexagonal pattern formation is playing a subdomin
role and is not strong enough to alter the growth law. T
diffusion flux is always dominant throughout the late stage
coarsening@see Fig. 10~b!#. Although we studied several sys
tems with combinations of the model parameters other t
presented in the preceding section, we found no indica
thatFh becomes dominant overFd . It is not yet understood
why hydrodynamic flux cannot be equally important f
asymmetric block copolymers, and it will be of great intere
to further investigate this problem.

Finally we briefly touch upon the wave number selectio
In our simulations we found that the peak position of t
scattering function reaches a constant value att'10 000 and
remains at that value thereafter. Obviously the system se
a particular wave number for periodic structures in rat
earlier stages of pattern formation.~Recall the results in
Secs. III and IV that the power-law scaling of the doma
size is observed in much late stages.! Furthermore, the se
lected wave number of the lamellar phase is decreased w
the hydrodynamic interactions are present, as seen from
1. A possible explanation of this fact is beyond the scope
the present paper because wave number adjustment m
involve the spatial inhomogeneities induced by defects;
the understanding of defect motion in the coarsening proc
remains challenging@21#. Notwithstanding this, we apply a
random phase approximation to solve our model. The an
sis is given in Appendix B. It is shown there that the nonl
earity induced by hydrodynamic couplings leads to the s
tionary pattern of smaller wave numbers. However, it
unclear whether this is the dominant mechanism of the w
number selection problem in block copolymer systems.

APPENDIX A: DOMAIN ORIENTATION FIELD

In this appendix we describe a technique to extract
domain orientation field~to be referred to as a director fiel
hereafter!, u(r ), of the domain structure. To construct th
director field we cannot use the local gradient of the or
parameter fieldc(r ) since it vanishes at maximum and min
mum of c(r ). Instead we use a slight modification of th
Fourier space filtering method of Ref.@22#. For ease of un-
derstanding of this technique, we first consider the lame
patterns.

An important observation to implement the method is t
S(k)5^c̃(k)c̃* (k)& @c̃(k) being the Fourier transform o
c(r )# for each timet is strongly peaked atk5kp ~which is
time dependent, in general!. We thus introduce a filtering
operatorFs that reduces the amplitude of the compone
c̃(k) that lie off thek5kp ring in Fourier space. For sim
plicity we choose a Gaussian filter, so that the filtering
defined by

Fsc~r !5c f~r ,u f ![E
k
e2 ik•re2(k2k f )

2/s2
c̃~k!, ~A1!
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wherek f5kp(cosuf ,sinuf), ands sets the width of the fil-
tering. The filtered functionc f(r ,u f) is large in magnitude in
those domains where the direction normal to the lo
lamella is close to theu f direction. We then define the direc
tor field u(r ) at each pointr as the angle maximizing
uc f(r ,u f)u as a function ofu f .

To convince oneself of the algorithm, take up an ide
state of straight parallel lamellae:

c~r !5A cos~kpx!. ~A2!

Then

uc f~r ,u f !u25~A2/2!e24(kp /s)2
$cosh@4~kp /s!2cosu f #

1cos~2kpx!%. ~A3!

Finding the angle maximizinguc f(r ,u f)u, one obtainsu(r )
50 at anyr , as required.

The above method works equally well for the hexago
because superposition of three straight lamellae aligne
multiples of p/3 is equivalent to the hexagonal pattern.
illustrate this, we show in Fig. 11 the ideal pattern of hex
gons,

c~r !5
1

2 (
j 51

3

~eik j •r1c.c!, ~A4!

wherek15kp(1,0), k25kp(21/2,A3/2), andk35kp(21/2,
2A3/2)52(k11k2), together with the director fieldu(r )
that we have numerically extracted by the filtering algorith
~In the actual numerical calculations we have used ei

FIG. 11. Orientation fieldu(r ) of the equilateral hexagona
structure@given by Eq.~A4! with kp51/4# as obtained by the fil-
tered Fourier transform method. The unit vector at siter denotes the
angle u(r ), and a contour plot of the hexagonal pattern is a
displayed.
8-8



in

t

ra

th
r o

c

te

rn
-
a

on

ea

ng

n

m.

n.
s we
r in
n is
at

er-
ld

ion

HYDRODYNAMIC INTERACTIONS IN ORDERING . . . PHYSICAL REVIEW E65 056308
angles ofu f equally spaced around the semicircle atk5kp
with s50.15, and fit a parabola to sets of three neighbor
points to determine the maximum.! If we note a sixfold de-
generacy of the ideal hexagons, then it can be seen tha
algorithm correctly captures the domain structure; i.e.,u is
equal to Bragg angle of the two-dimensional triangular B
vais lattice@23#.

APPENDIX B: STATIONARY WAVE NUMBER
WITH ADDED FLOW

In this appendix we consider how the presence of
hydrodynamic coupling affects the preferred wave numbe
the final stationary lamellar states. We start with Eqs.~7! and
~8!:

] tc5@e2~¹21k0
2!2#c1g̃¹2c32~v•“ !c, ~B1!

¹2z5gẑ•@“~¹21B¹22!c3“c#, ~B2!

with v5(]yz,2]xz), where we have rewritten Eq.~7! with

e[~t2/4!2B, k0[At/2. ~B3!

Since 2¹2z/c2z;h2/L2!1 @13# where h is the vertical
thickness of the system andL is the horizontal characteristi
length, we have neglected, for simplicity, the¹2 term on the
left-hand side of Eq.~8! @henceg[1/(c2h0) in Eq. ~B2!#. In
Eq. ~B1! we have inserted the nonlinear coupling parame
g̃ for convenience, which is eventually setg̃51. Notice that
the form ~B1! is very similar to the Swift-Hohenberg~SH!
equation@24#, which is a model describing cellular patte
formation in Rayleigh-Be´nard convection. The only differ
ence of Eq.~B1! from the SH equation is the existence of
positive definite operator2¹2 in front of the nonlinear term.

Let us solve Eqs.~B1! and ~B2! in Fourier space. We
define the Fourier transformation of an arbitrary functi
f (r ) as f (r )5(k f (k)eik•r, where the same notationf in Fou-
rier space should not cause any confusion hereafter. It is
to solve Eq.~B2! for z(k), with which Eq.~B1! is cast into
the following form after some algebra:

] tc~k!5r ~k!c~k!2g̃k2(
k1

(
k2

c~2k1!c~k2!

3c~k1k12k2!2gV~k!, ~B4!

where

r ~k!5e2~k22k0
2!2. ~B5!

The last term on the right-hand side~RHS! of Eq. ~B4! is the
flow contribution, and

V~k!5(
k1

(
k2

v~k;k1 ,k2!c~2k1!c~k2!c~k1k12k2!

~B6!

with
05630
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v~k;k1 ,k2![
1

2

ẑ•@k3~k22k1!# ẑ•~k23k1!

uk22k1u2

3S k1
21

B

k1
2

2k2
22

B

k2
2D . ~B7!

It should be remarked that the hydrodynamic coupli
gv(k;k1 ,k2) is strictly zero if all the wave vectorsk allowed
in c(k) lie on one single ringuku5ke , corresponding to
either an infinite system of lamellae parallel to, say,x direc-
tion or axisymmetric lamellar patterns.

In this appendix, we will focus on the scattering functio
defined by

S~k,t !5^J~k,t !&, J~k,t ![c~k,t !c* ~k,t !.

From Eq.~B4! we get

] tJ~k,t !52r ~k!J~k,t !2(
k1

(
k2

$@ g̃k21gv~k;k1 ,k2!#

3c~2k,t !c~2k1 ,t !c~k2 ,t !c~k1k12k2 ,t !

1~k→2k!%, ~B8!

where (k→2k) means a replacement in the foregoing ter
In order to proceed to find the equation forS(k,t) we need to
calculate the average of the four-point correlation functio
For this purpose we notice that the instantaneous pattern
observed in the simulations are labyrinthine and irregula
space. Hence we assume that the four-point correlatio
determined entirely by the pair correlation function, and th
two modes of differentk’s are poorly correlated.~Note that
during the coarsening of lamellar domains under consid
ation, the averageŝc(k,t)& are zero, and therefore shou
not contribute.! Thus we substitute

^c~2k,t !c~2k1 ,t !c~k2 ,t !c~k1k12k2 ,t !&

.dk1 ,2kS~k,t !S~k2 ,t !1dk2 ,kS~k,t !S~k1 ,t !

1dk1 ,k2
S~k,t !S~k1 ,t !,

which yields

] tS~k,t !52S~k,t !H r ~k!2(
k1

@3g̃k21gv̂~k,k1!#S~k1 ,t !J .

~B9!

Here

v̂~k,k1!5
uẑ•~k3k1!u2

uk2k1u2 S k21
B

k2
2k1

22
B

k1
2D . ~B10!

At this juncture, we define the effective response funct
x(k,t) by writing Eq. ~B9! as

] tS~k,t !522k2x21~k,t !S~k,t ! ~B11!
8-9
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on the analogy of the relaxation to equilibrium in the gene
theory of response functions.~A cautionary remark is in or-
der here. Since the dynamical model defined by Eqs.~B1!
and ~B2! neglects the noise terms, the solution of Eq.~B11!
does not relax to the proper equilibrium state. With the no
source included, however, the relationship~B12! below re-
mains unaltered.! Then we find

x21~k,t !5 t̃~ t !1k21
B

k2
1g(

q

v̂~k,q!

k2
S~q,t !,

~B12!

where we have used the relations~B5! and ~B3!, and

t̃~ t ![3g̃(
q

S~q,t !2t.

Given thisx, we identify the asymptotic peak positionke of
the scattering functionS(k)[S(k,t→`) with the wave
number at whichx achieves its maximum. One finds from
Eq. ~B12! thatke is then given by the solution to the follow
ing equation:

ke
42kb

42g(
q

v̂~ke ,q!S~q!

1gke
2F ]

]k2 (
q

v̂~k,q!S~q!G
k5ke

50, ~B13!

where we have definedkb[B1/4. Note that in the absence o
the flow (g50), Eq. ~B13! yields ke5kb , reproducing a
well-known result@12#. Equation~B13! is soluble for smallg
by substituting
an

e
nc

et

n

05630
l

e

S~q!5
1

t̃1k21B/k2
.

kb
2

ê1~k22kb
2!2

~B14!

into the left-hand side of Eq.~B13!. Here ê[kb
2( t̃12kb

2),
and the last equality follows from the fact thatS(k) in this
form has a maximum atk5kb . This approximation is valid
for sufficiently smallê. ~We can provea posteriori that the
renormalized parameterê is always positive.! For small
enoughê, we find that

F ]

]k2 (
q

v̂~k,q!S~q!G
k5ke

.
1

2 S ke
22

kb
4

ke
2D(q

S~q!,

and thus the last term on the LHS of Eq.~B13! contributes at
O(g2) since ke5kb1O(g). The remaining term
(qv̂(ke ,q)S(q) can be evaluated analytically by convertin
to a continuous Fourier space. We obtain

(
q

v̂~ke ,q!S~q!.
kb

4

4p
lnS L

kb
D ,

whereL is the upper momentum cutoff. Thus we finally g

ke5kbF12
ln~L/kb!

16p
gG ~B15!

to the leading order of accuracy. Since ln(L/kb)'ln(l/d).0,
wherel and d are lamellar spacing and domain width, r
spectively, we see that, in fact, there is a trend to sma
wave numbers at long times with added flow.
ys.
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